4.4 Article

Magnetic field lines, Hamiltonian dynamics, and nontwist systems

期刊

PHYSICS OF PLASMAS
卷 7, 期 6, 页码 2279-2289

出版社

AIP Publishing
DOI: 10.1063/1.874062

关键词

-

向作者/读者索取更多资源

Magnetic field lines typically do not behave as described in the symmetrical situations treated in conventional physics textbooks. Instead, they behave in a chaotic manner; in fact, magnetic field lines are trajectories of Hamiltonian systems. Consequently the quest for fusion energy has interwoven, for 50 years, the study of magnetic field configurations and Hamiltonian systems theory. The manner in which invariant tori breakup in symplectic twist maps, maps that embody one and a half degree-of-freedom Hamiltonian systems in general and describe magnetic field lines in tokamaks in particular, will be reviewed, including symmetry methods for finding periodic orbits and Greene's residue criterion. In nontwist maps, which describe, e.g., reverse shear tokamaks and zonal flows in geophysical fluid dynamics, a new theory is required for describing tori breakup. The new theory is discussed and comments about renormalization are made. (C) 2000 American Institute of Physics. [S1070-664X(00)01905-4].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据