4.7 Article

Oxidative cellular damage associated with transformation of Helicobacter pylori from a bacillary to a coccoid form

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 28, 期 11, 页码 1611-1618

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0891-5849(00)00284-7

关键词

Helicobacter pylori; reactive oxygen species; oxidative stress; DNA damage; protein carbonyl; free radicals

向作者/读者索取更多资源

Exposure to unfavorable conditions results in the transformation of Helicobacter pylori, a gastric pathogen, from a bacillary form to a coccoid form. The mechanism and pathophysiological significance of this transformation remain unclear. The generation of the superoxide radical by H. pylori has previously been shown to inhibit the bactericidal action of nitric oxide, the concentration of which is relatively high in gastric juice. With the use of chemiluminescence probes, both the qualify and quantity of reactive oxygen species generated by H, pylori have now been shown to change markedly during the transformation from the bacillary form to the coccoid form. The transformation of H. pylori was associated with oxidative modification of cellular proteins, including urease, an enzyme required for the survival of this bacterium in acidic gastric juice. Although the cellular abundance of urease protein increased during the transformation, the specific activity of the enzyme decreased and it underwent aggregation. Specific activities of both superoxide dismutase and catalase in H. pylori also decreased markedly during the transformation. The transformation of H. pylori was also associated with oxidative modification of DNA, as revealed by the generation of 8-hydroxyguanine, and subsequent DNA fragment. These observations indicate that oxidative stress elicited by endogenously generated reactive oxygen species might play an important role in the transformation of H. pylori from the bacillary form to the coccoid form. (C) 2000 Elsevier Science Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据