4.5 Article

Identification of linear viscoelastic constitutive models

期刊

JOURNAL OF BIOMECHANICS
卷 33, 期 6, 页码 685-693

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0021-9290(00)00004-X

关键词

hypergravity; viscoelasticity; brain; identification

向作者/读者索取更多资源

Accelerations induce in the brain mechanical stresses that may explain the loss of consciousness feared by fighter pilots. In this study, the brain is modelled as a multi-domain structure and a finite element method is used to identify the constitutive law parameters of each domain and then to analyse the stress level in the brain. The loading and observed strain rates induced by hypergravity seem to indicate a quasi-static behaviour of the brain structure. A general procedure has been developed to characterise the behaviour of a structure including several domains. Each of them is assumed to be isotropic and homogeneous with a linear viscoelastic behaviour. These constitutive laws were identified using only the displacements of several nodes on the envelope discarding the displacements between domains at the interaction surfaces. These interfaces may be buried inside the structure and not connected with the external surface. Two validation examples are proposed to show the reliability and effectiveness of the method. (C) 2000 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据