4.5 Article

Cytokines induce both necrosis and apoptosis via a common bcl-2-inhibitable pathway in rat insulin-producing cells

期刊

ENDOCRINOLOGY
卷 141, 期 6, 页码 2003-2010

出版社

ENDOCRINE SOC
DOI: 10.1210/en.141.6.2003

关键词

-

向作者/读者索取更多资源

The presence of activated macrophages within pancreatic islets in insulin-dependent diabetes mellitus suggests an involvement of beta-cell death by necrosis. The aim of this study was to investigate the frequencies and mechanisms of cytokine-induced beta-cell apoptosis and necrosis and the possible protection mediated by the antiapoptotic gene bcl-2. A combination of interleukin-1 beta, interferon-gamma, and tumor necrosis factor-alpha increased both necrosis (17% of cells) and apoptosis (5% of cells) in isolated whole rat islets, as determined by vital staining and fluorescence microscopy. Hyperexpression of Bcl-2, achieved by stable transfection using a multicopy viral vector containing a bcl-2 complementary DNA in rat insulin-producing RINm5F cells, counteracted both apoptosis and necrosis. Cytokine-induced cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase (which, in other cell types, may occur downstream or independently of a Bcl-2-preventable mitochondrial permeability transition) was observed in control- but neither in bcl-2-transfected cells nor in the presence of the iNOS inhibitor NG-methyl-L-arginine. Tumor necrosis factor-cu alone did not clearly induce cell death or poly(ADP-ribose) polymerase-cleavage. These findings suggest that cytokines induce both necrosis and apoptosis in insulin-producing cells via a common Bcl-2-preventable nitric oxide-dependent pathway, which may involve mitochondrial permeability transition. The necrosis:apoptosis ratio might be increased by a relative lack of caspase activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据