4.5 Article

The control of intracellular glycerol in Saccharomyces cerevisiae influences osmotic stress response and resistance to increased temperature

期刊

MOLECULAR MICROBIOLOGY
卷 36, 期 6, 页码 1381-1390

出版社

WILEY
DOI: 10.1046/j.1365-2958.2000.01955.x

关键词

-

向作者/读者索取更多资源

Glycerol has been demonstrated to serve as the major osmolyte of Saccharomyces cerevisiae. Consistently, mutant strains gpd1gpd2 and gpp1gpp2, which are devoid of the main glycerol biosynthesis pathway, have been shown to be osmosensitive. In addition, the primary hyperosmotic stress response is affected in these strains. Hog1p phosphorylation turned out to be prolonged and osmostress-induced gene expression is delayed compared with the kinetics observed in wild-type cells. A hog1 deletion strain was previously found to contain lower internal glycerol and therefore displays an osmosensitive phenotype. Here, we show that the osmosensitivity of hog1 is suppressed by growth at 37 degrees C. We reasoned that this temperature-remedial osmoresistance might be caused by a higher intracellular glycerol level at the elevated temperature. This hypothesis was confirmed by measurement of the glycerol concentration, which was shown to be similar for wild type and hog1 cells only at elevated growth temperatures. In agreement with this finding, hog1 cells containing an fps1 allele, encoding a constitutively open glycerol channel, have lost their temperature-remedial osmoresistance. Furthermore, gpd1gpd2 and gpp1gpp2 strains were found to be temperature sensitive. The growth defect of these strains could be suppressed by adding external glycerol. In conclusion, the ability to control glycerol levels influences proper osmostress-induced signalling and the cellular potential to grow at elevated temperatures. These data point to an important, as yet unidentified, role of glycerol in cellular functioning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据