4.4 Article

Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench)

期刊

GENOME
卷 43, 期 3, 页码 461-469

出版社

NATL RESEARCH COUNCIL CANADA
DOI: 10.1139/g00-003

关键词

drought tolerance; genetic mapping; post-flowering stress; restriction fragment length polymorphism

向作者/读者索取更多资源

Drought resistance is of enormous importance in crop production. The identification of genetic factors involved in plant response to drought stress provides a strong foundation for improving drought tolerance. Stay-green is a drought resistance trait in sorghum (Sorghum bicolor L. Moench) that gives plants resistance to premature senescence under severe soil moisture stress during the post-flowering stage. The objective of this study was to map quantitative trait loci (QTLs) that control the stay-green and chlorophyll content in sorghum. By using a restriction fragment length polymorphism (RFLP) map, developed from a recombinant inbred line (RIL) population, we identified four stay-green QTLs, located on three linkage groups. The QTLs (Stg1 and Stg2) are on linkage group A, with the other two, Stg3 and Stg4, on linkage groups D and J, respectively. Two stay-green QTLs, Stg1 and Stg2, explaining 13-20% and 20-30% of the phenotypic variability, respectively, were consistently identified in all trials at different locations in two years. Three QTLs for chlorophyll content (Chl1, Chl2, and Chl3), explaining 25-30% of the phenotypic variability were also identified under post-flowering drought stress. All coincided with the three stay-green QTL regions (Stg1, Stg2, andStg3) accounting for 46% of the phenotypic variation. The Stg1 and Stg2 regions also contain the genes for key photosynthetic enzymes, heat shock proteins, and an abscisic acid (ABA) responsive gene. Such spatial arrangement shows that linkage group A is important for drought- and heat-stress tolerance and yield production in sorghum. High-resolution mapping and cloning of the consistent stay-green QTLs may help to develop drought-resistant hybrids and to understand the mechanism of drought-induced senescence in plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据