4.8 Article

Shear stress-induced apoptosis of adherent neutrophils: A mechanism for persistence of cardiovascular device infections

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.110463197

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL047300, HL-47300] Funding Source: Medline

向作者/读者索取更多资源

The mechanisms underlying problematic cardiovascular device-associated infections are not understood. Because the outcome of the acute response to infection is largely dependent on the function of neutrophils, the persistence of these infections suggests that neutrophil function may be compromised because of cellular responses to shear stress. A rotating disk system was used to generate physiologically relevant shear stress levels (0-18 dynes/ cm(2); 1 dyne = 10 mu N) at the surface of a polyetherurethane urea film. We demonstrate that shear stress diminishes phagocytic ability in neutrophils adherent to a cardiovascular device material, and causes morphological and biochemical alterations that are consistent with those described for apoptosis. Complete neutrophil apoptosis occurred at shear stress levels above 6 dynes/cm(2) after only 1 h. Morphologically, these cells displayed irreversible cytoplasmic and nuclear condensation while maintaining intact membranes. Analysis of neutrophil area and filamentous actin content demonstrated concomitant decreases in both cell area and actin content with increasing levels of shear stress. Neutrophil phagocytosis of adherent bacteria decreased with increasing shear stress. Biochemical alterations included membrane phosphatidylserine exposure and DNA fragmentation, as evaluated by in situ annexin V and terminal deoxynucleotidyltransferase-mediated dUTP end labeling (TUNEL) assays, respectively. The potency of the shear-stress effect was emphasized by comparative inductive studies with adherent neutrophils under static conditions, The combination of tumor necrosis factor-or and cycloheximide was ineffective in inducing >21% apoptosis after 3 h. These findings suggest a mechanism through which shear stress plays an important role in the development of bacterial infections at the sites of cardiovascular device implantation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据