4.7 Article

Cytosolic phosphorylation of calnexin controls intracellular Ca2+ oscillations via an interaction with SERCA2b

期刊

JOURNAL OF CELL BIOLOGY
卷 149, 期 6, 页码 1235-1247

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.149.6.1235

关键词

phosphorylation; calnexin; ER lectin chaperones; Ca2+ ATPases; Ca2+ signaling

资金

  1. NIGMS NIH HHS [R01 GM55372] Funding Source: Medline

向作者/读者索取更多资源

Calreticulin (CRT) and calnexin (CLNX) are lectin chaperones that participate in protein folding in the endoplasmic reticulum (ER). CRT is a soluble ER lumenal protein, whereas CLNX is a transmembrane protein with a cytosolic domain that contains two consensus motifs for protein kinase (PK) C/proline-directed kinase (PDK) phosphorylation, Using confocal Ca2+ imaging in Xenopus oocytes, we report here that coexpression of CLNX with sarco endoplasmic reticulum calcium ATPase (SERCA) 2b results in inhibition of intracellular Ca2+ oscillations, suggesting a functional inhibition of the pump. By site-directed mutagenesis, we demonstrate that this interaction is regulated by a COOH-terminal serine residue (S562) in CLNX. Furthermore, inositol 1,4,5-trisphosphate-mediated Ca2+ release results in a dephosphorylation of this residue. We also demonstrate by coimmunoprecipitation that CLNX physically interacts with the COOH terminus of SERCA2b and that after dephosphorylation treatment, this interaction is significantly reduced. Together, our results suggest that CRT is uniquely regulated by ER lumenal conditions, whereas CLNX is, in addition, regulated by the phosphorylation status of its cytosolic domain. The S562 residue in CLNX acts as a molecular switch that regulates the interaction of the chaperone with SERCA2b, thereby affecting Ca2+ signaling and controlling Ca2+-sensitive chaperone functions in the ER.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据