4.8 Article

Attentional modulation of effective connectivity from V2 to V5/MT in humans

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.97.13.7591

关键词

-

资金

  1. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

The nonlinear nature of integration among cortical brain areas renders the effective connectivity between them inherently dynamic and context-sensitive. One emerging architectural principle of functional brain organization, which rests explicitly on these nonlinear interactions, is that neuronal responses expressed at any level in a sensory hierarchy reflect an interaction between (i) bottom up driving afferents from lower cortical areas and (ii) backwards modulatory inputs from higher areas that mediate top-down contextual effects. A compelling example is attentional modulation of responses in functionally specialized sensory areas. The aim of this work was to demonstrate that parietal regions may mediate selective attention to motion by modulating the effective connectivity from early visual cortex to the motion-sensitive area V5/MT. Using functional magnetic resonance imaging, and an analysis of effective connectivity based on nonlinear system identification, we found that backwards modulatory influences from the posterior parietal cortex are sufficient to account for a significant component of attentional modulation of V5/MT responses to driving inputs from V2. By explicitly modeling interactions among inputs to V5/MT. we were able to make inferences about the influences of V2 inputs and their concomitant activity-dependent modulation by parietal afferents. The latter effects embody dynamic changes in effective connectivity that may underlie attentional mechanisms. These results speak to the context-sensitive nature of functional integration in the brain and provide empirical evidence that attentional effects may be mediated by backwards connections, of a modulatory son in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据