4.4 Article

Yeast ribosomal protein L24 affects the kinetics of protein synthesis and ribosomal protein L39 improves translational accuracy, while mutants lacking both remain viable

期刊

BIOCHEMISTRY
卷 39, 期 24, 页码 7236-7244

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi9925266

关键词

-

向作者/读者索取更多资源

Four mutant strains from Saccharomyces cerevisiae were used to study ribosome structure and function. They included a strain carrying deletions of the two genes encoding ribosomal protein L24, a strain carrying a mutation spb2 in the gene for ribosomal protein L39, a strain carrying a deletion of the gene for L39, and a mutant lacking both L24 and L39. The mutant lacking only L24 showed just 25% of the normal polyphenylalanine-synthesizing activity followed by a decrease in P-site binding, suggesting the possibility that protein L24 is involved in the kinetics of translation, Each of the two L39 mutants displayed a 4-fold increase of their error frequencies over the wild type. This was accompanied by a substantial increase in A-site binding, typical of error-prone mutants. The absence of L39 also increased sensitivity to paromomycin, decreased the ribosomal subunit ratio, and caused a cold-sensitive phenotype. Mutant cells lacking both ribosomal proteins remained viable. Their ribosomes showed reduced initial rates caused by the absence of L24 but a normal extent of polyphenylalanine synthesis and a substantial in vivo reduction in the amount of 80S ribosomes compared to wild type. Moreover, this mutant displayed decreased translational accuracy, hypersensitivity to the antibiotic paromomycin, and a cold-sensitive phenotype, all caused mainly by the deletion of L39. Protein L39 is the first protein of the 60S ribosomal subunit implicated in translational accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据