4.6 Article

Calcineurin co-regulates contractile and metabolic components of slow muscle phenotype

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 26, 页码 19653-19660

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M000430200

关键词

-

向作者/读者索取更多资源

Activation of the transcription factor nuclear factor of activated T cells by the calcium-sensitive serine/threonine phosphatase calcineurin has been proposed as one of the molecular mechanisms by which motor nerve activity establishes the slow muscle phenotype. To investigate whether the calcineurin pathway can regulate the large spectrum of slow muscle characteristics in vivo, we treated rats for three weeks with cyclosporin A (an inhibitor of calcineurin). In soleus (slow muscle), but not in plantaris (fast muscle), the proportion of slow myosin heavy chain (MHC-1) and slow sarcoplasmic reticulum ATPase (SERCA2a) was decreased, whereas that of fast MHC (MHC-2A) and fast SERCA1 increased, indicating a slow to fast contractile phenotype transition. Cytosolic isoforms of creatine kinase and lactate dehydrogenase (most abundant in fast fibers), as well as mitochondrial creatine kinase and citrate synthase activities (elevated in fast/oxidative fibers) were dose dependently increased by cyclosporin A treatment in soleus muscle, with no change in plantaris. Calcineurin catalytic subunit was more abundant in soleus muscle fibers compared with plantaris. Taken together these results suggest that the calcineurin pathway co-regulates a set of multigenic protein families involved in the transition between slow oxidative (type I) to fast oxidative (type IIa) phenotype in soleus muscle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据