4.6 Article

Nonsynonymous substitution rate (Ka) is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes

期刊

BIOLOGY DIRECT
卷 6, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/1745-6150-6-13

关键词

-

类别

资金

  1. National Science and Technology Key Project [2008ZX1004-013]
  2. 863 Program [2009AA01A130]
  3. Special Foundation Work Program [2009FY120100]
  4. National Key Technology RD Program [2008BA164B02]
  5. Ministry of Science and Technology of the People's Republic of China [2011CB944100]

向作者/读者索取更多资源

Background: Mammalian genome sequence data are being acquired in large quantities and at enormous speeds. We now have a tremendous opportunity to better understand which genes are the most variable or conserved, and what their particular functions and evolutionary dynamics are, through comparative genomics. Results: We chose human and eleven other high-coverage mammalian genome data-as well as an avian genome as an outgroup-to analyze orthologous protein-coding genes using nonsynonymous (Ka) and synonymous (Ks) substitution rates. After evaluating eight commonly-used methods of Ka and Ks calculation, we observed that these methods yielded a nearly uniform result when estimating Ka, but not Ks (or Ka/Ks). When sorting genes based on Ka, we noticed that fast-evolving and slow-evolving genes often belonged to different functional classes, with respect to species-specificity and lineage-specificity. In particular, we identified two functional classes of genes in the acquired immune system. Fast-evolving genes coded for signal-transducing proteins, such as receptors, ligands, cytokines, and CDs (cluster of differentiation, mostly surface proteins), whereas the slow-evolving genes were for function-modulating proteins, such as kinases and adaptor proteins. In addition, among slow-evolving genes that had functions related to the central nervous system, neurodegenerative disease-related pathways were enriched significantly in most mammalian species. We also confirmed that gene expression was negatively correlated with evolution rate, i.e. slow-evolving genes were expressed at higher levels than fast-evolving genes. Our results indicated that the functional specializations of the three major mammalian clades were: sensory perception and oncogenesis in primates, reproduction and hormone regulation in large mammals, and immunity and angiotensin in rodents. Conclusion: Our study suggests that Ka calculation, which is less biased compared to Ks and Ka/Ks, can be used as a parameter to sort genes by evolution rate and can also provide a way to categorize common protein functions and define their interaction networks, either pair-wise or in defined lineages or subgroups. Evaluating gene evolution based on Ka and Ks calculations can be done with large datasets, such as mammalian genomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据