4.5 Article

Colloid dynamics and transport of major elements through a boreal river -: brackish bay mixing zone

期刊

MARINE CHEMISTRY
卷 71, 期 1-2, 页码 1-21

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0304-4203(00)00035-9

关键词

Kalix River; Bothnic Bay; colloids; low-salinity zone; aggregation

向作者/读者索取更多资源

A range of biogeochemical methodologies were applied to investigate how aggregation processes affected the phase distribution and mixing of Fe, Si, and organic carbon between the Kalix River and the Bothnic Bay, northernmost Baltic Sea (salinity less than or equal to 3, the low-salinity zone (LSZ) was stretching over 60 km in the spring). During the dynamic springflood conditions studied, small U-238-Th-234 disequilibria, low sediment trap fluxes, laboratory mixing experiments, as well as results from an independent two-box, two-dimensional mixing model combine to suggest that no significant removal of Fe, Si, or organic C was occurring in the highly-resolved LSZ. While no conclusions may be drawn based solely on property-salinity plots over narrow salinity ranges, apparently linear graphs for Fe and Si over 3 separate years also suggest minimal removal in this regime. At the same time, size distributions both of elements - from cross-flow ultrafiltration - and of bulk suspended solids - from light scattering (photon correlation spectroscopy [PCS]) - indicated that significant aggregation was taking place. The aggregation-without-significant-settling scenario in this low-salinity mixing regime, with a geochemistry similar to that of neighboring Russian Arctic rivers, is hypothesized to result from a comparatively high organic-to-detrital matter characteristic of the aggregates. While first principles would indeed suggest that decreasing electrostatic repulsion during mixing lead to aggregation, a low specific density of mineral-poor amorphous organic aggregates may lead to transport of these authigenic particles further away from the river mouth. The role of detrital sinkers on vertical removal of suspended organic matter is discussed in the wider context of scavenging mechanisms in the ocean. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据