4.4 Article Proceedings Paper

Magnetomechanics of internal-dipole, Halbach-array motor/generators

期刊

IEEE TRANSACTIONS ON MAGNETICS
卷 36, 期 4, 页码 2004-2011

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/20.875294

关键词

flywheel energy storage; magnetic levitation; permanent magnet motors

向作者/读者索取更多资源

The magnetomechanical behavior of internal-dipole, Halbach-type magnet arrays is analyzed for application as a motor/generator (M/G) with an energy-storage flywheel that is suspended by low-stiffness bearings. Scaling laws for the maximization of torque are derived as a function of geometry, The optimal geometry is relatively insensitive to gap and stator design and occurs approximately at a ratio of inner to outer diameter of the array of 0.8. Values are found for the angular extent of each phase of the stator coil that minimize the stiffness. The negative stiffness of the internal-dipole array is calculated for several manufacturable configurations and is shown to provide an upper limit on the available torque of the M/G according to the positive stiffness of the bearings. Experimental results are reported for an internal-dipole array used as a M/G for a flywheel suspended by a bearing consisting of a permanent-magnet assembly levitated over an array of high-temperature superconductors. Results show that the system is stable and that idling losses are low.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据