4.6 Article

The effect of the cooling atmosphere in the preparation of flame-annealed Pt(111) electrodes on CO adlayer oxidation

期刊

ELECTROCHEMISTRY COMMUNICATIONS
卷 2, 期 7, 页码 487-490

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S1388-2481(00)00062-X

关键词

carbon monoxide; Pt(111); crystalline defects; oxidation

向作者/读者索取更多资源

The effect of the cooling atmosphere on the rate of CO adlayer oxidation on flame-annealed Pt( 111) has been studied. Cooling of a flame-annealed Pt(111) electrode in air results in a higher amount of crystalline defects compared to Pt(111) cooled in a hy-drogen-argon stream. Although the blank profiles in 0.5 M H2SO4 of Pt(111), cooled in air and under oxygen exclusion, are virtually identical, CO adlayer oxidation occurs at significantly lower overpotentials on the former electrode. Three voltammetric peaks are observed for subsaturated CO adlayer oxidation on Pt(111), cooled in Ar+H-2 mixture, while only two peaks develop in the case of a Pt(111) surface cooled in air. Random crystalline defects, introduced via cooling of a flame-annealed Pt(111) in air, enhance CO adlayer oxidation, and apparently also suppress the third high-potential peak observed on a quasi-perfect (111) surface. The high sensitivity of the saturated CO adlayer oxidation to the presence of crystalline defects on Pt(111) can hence be used as a straightforward, sensitive, though qualitative method to assess the degree of crystalline order of the electrode. (C) 2000 Elsevier Science S.A. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据