4.6 Review

Mechanical stress-initiated signal transductions in vascular smooth muscle cells

期刊

CELLULAR SIGNALLING
卷 12, 期 7, 页码 435-445

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0898-6568(00)00096-6

关键词

mechanical stress; signal transduction; vascular smooth muscle cells; receptors, G proteins; protein kinase C; MAPK; MKP-1; aging

向作者/读者索取更多资源

Mechanical force is an important modulator of cellular morphology and function in a variety of tissues, and is particularly important in cardiovascular systems. Vascular smooth muscle cell (VSMC) hypertrophy and proliferation contribute to the development of atherosclerosis, hypertension, and restenosis, where mechanical forces are largely disturbed. How VSMCs sense and transduce the extracellular mechanical signals into the cell nucleus resulting in quantitative and qualitative changes in gene expression is an interesting and important research field. Recently, it has been demonstrated that mechanical stress rapidly induced phosphorylation of platelet-derived growth factor (PDGF) receptor, activation of integrin receptor, stretch-activated cation channels, and G proteins, which might serve as mechanosensors. Once mechanical force is sensed, protein kinase C and mitogen-activated protein kinases (MAPKs) were activated, leading to increased c-fos and c-jun gene expression and enhanced transcription factor AP-1 DNA-binding activity. Interestingly, physical forces also rapidly resulted in expression of MAPK phosphatase-1 (MKP-1), which inactivates MAPKs. Thus, mechanical stresses can directly stretch the cell membrane and alter receptor or G protein conformation, thereby initiating signalling pathways, usually used by growth factors. These findings have significantly enhanced our knowledge of the pathogenesis of arteriosclerosis and provided promising information for therapeutic interventions for vascular diseases. (C) 2000 Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据