4.8 Article

rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development

期刊

PLANT JOURNAL
卷 23, 期 1, 页码 29-42

出版社

BLACKWELL SCIENCE LTD
DOI: 10.1046/j.1365-313x.2000.00747.x

关键词

endosperm; sugar; starch; assimilation; transfer layer; seed

向作者/读者索取更多资源

The maize cob presents an excellent opportunity to screen visually for mutations affecting assimilate partitioning in the developing kernel. We have identified a defective kernel mutant termed rgf1, reduced grain filling, with a final grain weight 30% of the wild type. In contrast with most defective endosperm mutants, rgf1 shows gene dosage-dependent expression in the endosperm. rgf1 kernels possess a small endosperm incompletely filling the papery pericarp, but embryo development is unaffected and the seeds are viable. The mutation conditions defective pedicel development and greatly reduces expression of endosperm transfer layer-specific markers. rgf1 exhibits striking morphological similarities to the mn1 mutant, but maps to a locus approximately 4 cm away from mn1 on chromosome 2 of maize. Despite reduced starch accumulation in the mutant, no obvious lesion in starch biosynthesis has been detected. Free sugar levels are unaltered in rgf1 endosperm. Rates of sugar uptake, measured over short (8 h) periods in cultured kernels, are increased in rgf1 compared to the wild type. rgf1 and wild-type kernels, excised at 5 DAP and cultured in vitro also develop differently in response to variations in sugar regime: glucose concentrations above 1% arrest placentochalazal development of rgf1 kernels, but have no effect on cultured wild-type kernels. These findings suggest that either uptake or perception of sugar(s) in endosperm cells at 5-10 DAP determines the rgf1 kernel phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据