4.2 Article

Effects of new polymer-coated extracorporeal circuits on biocompatibility during cardiopulmonary bypass

期刊

ARTIFICIAL ORGANS
卷 24, 期 7, 页码 547-554

出版社

WILEY
DOI: 10.1046/j.1525-1594.2000.06520.x

关键词

cardiopulmonary bypass; bradykinin; complement; CD35; CD14; protein adsorption

向作者/读者索取更多资源

An inflammatory response due to bioincompatibility of extracorporeal circuits is a major clinical issue during cardiopulmonary bypass (CPB). By using a swine model, we determined whether new polymer-coated circuits, the blood-contacting surfaces of which are coated with poly(2-methoxyethylacrylate) (PMEA), would reduce the inflammatory response during CPB. Plasma bradykinin levels and the percentages of CD35-positive monocytes in PMEA-coated circuits were significantly lower than those in uncoated circuits during CPB. The amount of proteins adsorbed on the PMEA-coated circuits was significantly lower than that on the uncoated circuits (0.30 mu g/cm(2) versus 3.42 mu g/ cm(2)). Almost no IgG, IgM, or C3c/d was detected in proteins adsorbed on the PMEA-coated circuits although these proteins were clearly detected in proteins adsorbed on the uncoated circuits. We concluded that PMEA coating could reduce complement activation during CPB by suppressing the adsorption of IgG and IgM, which activate C3 via the classical pathway, on the surface of the circuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据