4.4 Article

Two Drosophila innexins are expressed in overlapping domains and cooperate to form gap-junction channels

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 11, 期 7, 页码 2459-2470

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.11.7.2459

关键词

-

资金

  1. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

Members of the innexin protein family are structural components of invertebrate gap junctions and are analogous to vertebrate connexins. Here we investigate two Drosophila innexin genes, Dm-inx2 and Dm-inx3 and show that they are expressed in overlapping domains throughout embryogenesis, most notably in epidermal cells bordering each segment. We also explore the gap-junction-forming capabilities of the encoded proteins. In paired Xenopus oocytes, the injection of Dm-inx2 mRNA results Fn the formation of voltage-sensitive channels in only similar to 40% of cell pairs. In contrast, Dm-Inx3 never forms channels. Crucially, when both mRNAs are coexpressed, functional channels are formed reliably, and the electrophysiological properties of these channels distinguish them from those formed by Dm-Inx2 alone. We relate these in vitro data to in vivo studies. Ectopic expression of Dm-inx2 in vivo has limited effects on the viability of Drosophila, and animals ectopically expressing Dm-inx3 are unaffected. However, ectopic expression of both transcripts together severely reduces viability, presumably because of the formation of inappropriate gap junctions. We conclude that Dm-Inx2 and Dm-Inx3, which are expressed in overlapping domains during embryogenesis, can form oligomeric gap-junction channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据