4.7 Article

Systemic induction of a Phytolacca insularis antiviral protein gene by mechanical wounding, jasmonic acid, and abscisic acid

期刊

PLANT MOLECULAR BIOLOGY
卷 43, 期 4, 页码 439-450

出版社

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1006444322626

关键词

jasmonic acid; Phytolacca insularis antiviral protein (PIP); ribosome-inactivating protein (RIP); wound-inducible expression

向作者/读者索取更多资源

We have isolated a gene encoding a ribosome-inactivating protein (RIP) from Phytolacca insularis, designated as P. insularis antiviral protein 2 (PIP2). The PIP2 gene contained an open reading frame encoding a polypeptide of 315 amino acids. The deduced amino acid sequence of PIP2 was similar to those of other RIPs from Phytolacca plants. Recombinant PIP2 was expressed in Escherichia coli and was used to investigate its biological activities. Recombinant PIP2 inhibited protein synthesis in rabbit reticulocyte lysate by inactivating ribosomes through N-glycosidase activity. It also exhibited antiviral activity against tobacco mosaic virus (TMV). Expression of the PIP2 gene was developmentally regulated in leaves and roots of P. insularis. Furthermore, expression of the PIP2 gene was induced in leaves by mechanical wounding. The wound induction of the PIP2 gene was systemic. Expression of the PIP2 gene also increased in leaves in a systemic manner after treatment with jasmonic acid (JA) and abscisic acid (ABA), but not with salicylic acid (SA). These results imply that plants have employed the systemic synthesis of the defensive proteins to protect themselves more efficiently from infecting viruses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据