4.8 Review

Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage

期刊

ECOLOGY LETTERS
卷 3, 期 4, 页码 362-377

出版社

WILEY
DOI: 10.1046/j.1461-0248.2000.00161.x

关键词

bacteria; bacteriophage; community structure; evolution; host range; mutations; resistance

类别

向作者/读者索取更多资源

A major goal of community ecology is to link biological processes at lower scales with community patterns. Microbial communities are especially powerful model systems for making these links. In this article, we review recent studies of laboratory communities of bacteria and bacteriophage (viruses that infect bacteria). We focus on the ecology and evolution of bacteriophage-resistance as a case study demonstrating the relationship between specific genes, individual interactions, population dynamics, community structure, and evolutionary change. In laboratory communities of bacteria and bacteriophage, bacteria rapidly evolve resistance to bacteriophage infection. Different resistance mutations produce distinct resistance phenotypes, differing, for example, in whether resistance is partial or complete, in the magnitude of the physiological cost associated with resistance, and in whether the mutation can be countered by a host-range mutation in the bacteriophage. These differences determine whether a mutant can invade, the effect its invasion has on the population dynamics of sensitive bacteria and phage, and the resulting structure of the community. All of these effects, in turn, govern the community's response to environmental change and its subsequent evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据