4.8 Article

Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.97.15.8629

关键词

-

资金

  1. NINDS NIH HHS [NS37585, R01 NS037585, R37 NS037585] Funding Source: Medline

向作者/读者索取更多资源

Astrocytes can release glutamate in a calcium-dependent manner and consequently signal to adjacent neurons. Whether this glutamate release pathway is used during physiological signaling or is recruited only under pathophysiological conditions is not well defined. One reason for this lack of understanding is the limited knowledge about the levels of calcium necessary to stimulate glutamate release from astrocytes and about how they compare with the range of physiological calcium levels in these cells. We used flash photolysis to raise internal calcium in astrocytes, while monitoring astrocytic calcium levels and glutamate, which evoked slow inward currents that were recorded electrophysiologically from single neurons grown on microislands of astrocytes. With this approach, we demonstrate that modest changes of astrocytic calcium, from 84 to 140 nM, evoke substantial glutamatergic currents in neighboring neurons (-391 pA), with a Hill coefficient of 2.1 to 2.7. Because the agonists glutamate, norepinephrine. and dopamine all raise calcium in astrocytes to levels exceeding 1.8 mu M, these quantitative studies demonstrate that the astrocytic glutamate release pathway is engaged at physiological levels of internal calcium. Consequently, the calcium-dependent release of glutamate from astrocytes functions within an appropriate range of astrocytic calcium levels to be used as a signaling pathway within the functional nervous system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据