4.7 Article

Electron-cyclotron maser driven by charged-particle acceleration from magnetic field-aligned electric fields

期刊

ASTROPHYSICAL JOURNAL
卷 538, 期 1, 页码 456-466

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/309094

关键词

acceleration of particles; Earth; MHD; masers; plasmas

向作者/读者索取更多资源

We present a detailed description of the auroral kilometric radiation (AKR) source region based on observations from the Fast Auroral SnapshoT (FAST) satellite and discuss how these new results may pertain to solar and stellar radio sources. FAST satellite observations are directly within the AKR source region and have unprecedented spatial and temporal resolution. They confirm many of the fundamental elements of the electron-cyclotron maser mechanism but with substantial modification. The most important modification is that the emissions do not draw their energy from a loss-cone instability; rather, the radiation results from an unstable horseshoe or shell distribution. The most far-reaching implication is that the electron-cyclotron maser is directly associated with a particular type of charged particle acceleration, a magnetic field-aligned (parallel) electric field in a dipole magnetic field. These findings change several of the characteristics of the electron-cyclotron maser mechanism and may necessitate reanalysis of some astrophysical radio sources. Under the shell instability, radio emissions with brightness temperatures similar to 10(14) K, the steady state limit of the loss-cone instability, may be continuous. Through observations, we demonstrate that source brightness may be as high as 10(20) K in steady state. A moderately or strongly relativistic beam may result in broadband emissions. A loss cone is not required, so the radiation source may be high above the stellar or planetary surface. Although the generation is in the X mode with k(parallel to) = 0, we suggest that the radiation, guided by a density cavity that is created by the parallel electric field, efficiently converts to the R mode, which experiences substantially lower absorption at higher harmonics. These findings also suggest that parallel electric fields may be a fundamental particle acceleration mechanism in astrophysical plasmas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据