4.6 Article

Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-κB, AP-1, and CREB activation in HEK293 cells

期刊

出版社

ACADEMIC PRESS INC
DOI: 10.1006/bbrc.2000.3106

关键词

-

向作者/读者索取更多资源

Well-established mechanisms for regulation of protein activity include thiol-mediated oxidoreduction in addition to protein-protein interactions and phosphorylation. Nucleoredoxin (NRX), glutaredoxin (GRX), and thioredoxin (TRX) have been shown to act as a potent; thiol reductase and reactive oxygen species regulator. They constitute a oxidoreductase superfamily and have been suggested as a candidate operating in the redox regulation of gene expression. We demonstrated here that intracellular localization of these redox molecules differ from each other and that the redox molecules differentially regulate NF-kappa B, AP-1, and CREB activation induced by TNF alpha, PMA, and forskolin and by expression of signaling intermediate kinases, NIK, MEKK, and PKA in HEK293 cells. This is a first report that describes involvement of NRX and GRX and differences from TRX in transcriptional regulation of NF-kappa B, AP-1, and CREB in living cells. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据