4.7 Article

On the second-order corrections to the quantum canonical equilibrium density matrix

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 113, 期 4, 页码 1380-1390

出版社

AMER INST PHYSICS
DOI: 10.1063/1.481928

关键词

-

向作者/读者索取更多资源

We consider the equilibrium state of a quantum system weakly coupled to a quantum bath within second order perturbation theory. It was previously shown by Romero-Rochin and Oppenheim [Physica A 155, 52 (1989)] that the equilibrium state deviates from the canonical form, e(-beta Hs)/Z(s) (H-s is the free system Hamiltonian and Z(s) the canonical partition function). We reproduce this result via a different derivation, starting from the non-Markovian, rather than the Markovian, quantum Master equation. Our derivation sheds new light on the mechanism that stabilizes the deviation from the canonical form and shows that it involves an interplay between a static distortion to the equilibrium state and dynamical system-bath correlations. We show that this deviation is a necessary consequence of translational invariance and vanishes when the rotating-wave-approximation is applied. The deviation is also shown to vanish for a two-level system off-diagonally coupled to a heat bath or when the Lamb shifts are neglected. Two ways for numerically evaluating the second order deviations are described. Finally, the deviations from canonical equilibrium are given an illuminating geometrical interpretation in terms of the phase space Wigner distribution. (C) 2000 American Institute of Physics. [S0021-9606(00)50828-9].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据