4.6 Article

Two-dimensional delineation of ultrashallow junctions obtained by ion implantation and excimer laser annealing

期刊

APPLIED PHYSICS LETTERS
卷 77, 期 4, 页码 552-554

出版社

AMER INST PHYSICS
DOI: 10.1063/1.127041

关键词

-

向作者/读者索取更多资源

Junctions shallower than 100 nm, obtained by ion implantation and excimer laser annealing, have been characterized in two dimensions by transmission electron microscopy (TEM) on chemically treated samples. The chemical treatment selectively removes silicon as a function of the B concentration, making thinner the regions where B is present in the cross section of the sample, with respect to the n-type substrate. Both secondary ion mass spectrometry and spreading resistance profiling measurements have been performed, in order to quantify the contour line obtained by TEM in terms of B concentration. The results achieved by the two-dimensional technique show interesting features, related to the particular redistribution of B occurring when silicon is melted by excimer laser annealing irradiation. In particular, a rectangular shape of the doped region obtained by laser annealing could be evidenced, caused by the fast diffusion in the melted material, completely different from the typical half-moon-shaped, thermally annealed, two-dimensional B profile. The feasibility of ultrashallow junctions by laser annealing, with depths below 100 nm and high electrical activation, is demonstrated. However, a huge lateral diffusion in the melted silicon is also to be taken into account when considering excimer laser treatments as an alternative to standard rapid thermal annealing. (C) 2000 American Institute of Physics. [S0003-6951(00)02230-0].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据