4.8 Article

Lumped kinetics for solid-catalyzed wet oxidation: A versatile model

期刊

JOURNAL OF CATALYSIS
卷 193, 期 2, 页码 224-237

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/jcat.2000.2891

关键词

heterogeneous wet oxidation; lumped kinetics; detoxification; wastewater

向作者/读者索取更多资源

Kinetic modeling of solid-catalyzed deep oxidation of pollutants in water is crucial to the design and scale-up of wastewater wet oxidation treatment. Due to their simplicity, the overall kinetics using power-law rates are often unable to capture the important features in such oxidation systems. However, detailed mechanistic approaches aimed at establishing complex reaction networks where several species and intermediates need to be identified become quickly cumbersome and costly. Lumped kinetic approaches offer a balanced trade-off between sophistication and simplicity. A versatile three-lump triangular kinetic model was proposed for the description of solid-catalyzed wet oxidation of various pollutants in wastewater effluents. The model is an offshoot of the well-known generalized lumped kinetic model introduced for homogeneous wet oxidation. This model was extended, using the Langmuir-Hinshelwood-Hougen-Watson framework, to describe the evolution of heterogeneous catalytic wet oxidation reactions. The model, in the form of a set of three implicit nonlinear differential equations, was validated using literature data obtained under a variety of experimental conditions, such as subcritical or supercritical water conditions, batch and continuous reactors, a multitude of organic loads in the form of carbon-, nitrogen-, and oxygen-bearing compounds, and using different kinetic variables such as TOC and COD. In all cases, this strategy led to calculated parameters that met the thermodynamic, kinetic, and statistical criteria. The uncertainty and confidence joint regions were estimated using bootstrap Monte Carlo techniques. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据