4.6 Article

Substrate specificity in glycoside hydrolase family 10 - Structural and kinetic analysis of the streptomyces lividans xylanase 10A

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 30, 页码 23020-23026

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.275.30.23020

关键词

-

向作者/读者索取更多资源

Endoxylanases are a group of enzymes that hydrolyze the beta-1,4-linked xylose backbone of xylans. They are predominantly found in two discrete sequence families known as glycoside hydrolase families 10 and 11. The Streptomyces lividans xylanase Xyl10A is a family 10 enzyme, the native structure of which has previously been determined by x-ray crystallography at a 2.6 Angstrom resolution (Derewenda, U., Swenson, L., Green, R., Wei, Y., Morosoli, R., Shareck, F., Kluepfel, D., and Derewenda, Z. S. (1994) J. Biol. Chem. 269, 20811-20814). Here, we report the native structure of Xyl10A refined at a resolution of 1.2 Angstrom which reveals many features such as the rare occurrence of a discretely disordered disulfide bond between residues Cys-168 and Cys-201. In order to investigate substrate binding and specificity in glycoside hydrolase family 10, the covalent xylobiosyl enzyme and the covalent cellobiosyl enzyme intermediates of Xyl10A were trapped through the use of appropriate 2-fluoroglycosides. The Lu-linked intermediate with the nucleophile, Glu-236, is in a C-4(1) chair conformation as previously observed in the family 10 enzyme Cex from Cellulomonas fimi (Notenboom, V., Birsan, C., Warren, R. A. J., Withers, S. G., and Rose, D. R. (1998) Biochemistry 37, 4751-4758). The different interactions of Xyl10A with the xylobiosyl and cellobiosyl moieties, notably conformational changes in the -2 and -1 subsites, together with the observed kinetics on a range of aryl glycosides, shed new light on substrate specificity in glycoside hydrolase family 10.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据