4.5 Article

Wortmannin inhibition of forskolin-stimulated chloride secretion by T84 cells

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
卷 1467, 期 1, 页码 54-64

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0005-2736(00)00204-2

关键词

chloride secretion; wortmannin; Na/K-ATPase; MAP kinase inhibitor; T84 cell; apigenin

向作者/读者索取更多资源

The time- and dose-dependent effects of wortmannin on transepithelial electrical resistance (R-te) and forskolin-stimulated chloride secretion in TX4 monolayer cultures were studied. In both instances, maximal effects developed over 2 h and were stable thereafter. Inhibition of forskolin-stimulated chloride secretion, as measured by the short-circuit current (I,,) technique, had an IC50 of 200-500 nM, which is 100-fold higher than for inhibition of phosphatidylinositol 3-kinase (PI3K), but similar to the IC50 for inhibition of myosin light chain kinase (MLCK) and mitogen-activated protein kinases (MAPK). previous work demonstrated that 500 nM wortmannin did not inhibit the cAMP activation of apical membrane chloride channels. We show here that 500 nM wortmannin has no affect on basolateral Na/K/2Cl-cotransporter activity, but inhibits basolateral membrane Na/K-ATPase activity significantly. The MLCK inhibitors ML-7 and KT5926 were without affect on forskolin-stimulated I-sc. Similarly, the p38- and MEK-specific MAPK inhibitors SB203580 and PD98059 did not reduce forskolin-stimulated I-sc. In contrast, the non-specific MAPK inhibitor apigenin reduced forskoiin-stimulated I-sc and basolateral membrane Na/K-ATPase activity similar to wortmannin. Tn isolated membranes from T84 cells, wortmannin did not inhibit Na/K-ATPase enzymatic activity directly. We conclude that one or more MAPK may regulate the functional expression of basolateral membrane Na/K-ATPase by controlling the abundance of enzyme molecules in the plasma membrane. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据