4.7 Article

Effects of n-acetylcysteine in a rat model of ischemia and reperfusion injury

期刊

CARDIOVASCULAR RESEARCH
卷 47, 期 3, 页码 537-548

出版社

OXFORD UNIV PRESS
DOI: 10.1016/S0008-6363(00)00018-3

关键词

arteries; free radicals; shock

向作者/读者索取更多资源

Objective: Splanchnic artery occlusion shock (SAO) causes an enhanced formation of reactive oxygen species (ROS), which contribute to the pathophysiology of shock. Here we have investigated the effects of n-acetylcysteine (NAC), a free radical scavenger, in rats subjected to SAG shack. Methods and results: Treatment of rats with NAC (applied at 20 mg/kg, 5 min prior to reperfusion, followed by an infusion of 20 mg/kg/h) attenuated the mean arterial blood and the migration of polymorphonuclear cells (PMNs) caused by SAG-shock. NAC also attenuated the ileum injury (histology) as well as the increase in the tissue levels of myeloperoxidase (MPO) and malondialdehyde (MDA) caused by SAG shock in the ileum. There was a marked increase in the oxidation of dihydrorhodamine 123 to rhodamine in the plasma of the SAG-shocked rats after reperfusion. Immunohistochemical analysis for nitrotyrosine and for poly (ADP-ribose) synthetase (PARS) revealed a positive staining in ileum from SAG-shocked rats. The degree of staining for nitrotyrosine and PARS were markedly reduced in tissue sections obtained from SAG-shocked rats which had received NAG. Reperfused ileum tissue sections from SAG-shocked rats showed positive staining for P-selectin, which was mainly localised in the vascular endothelial cells. Ileum tissue section obtained from SAG-shocked rats with anti-intercellular adhesion molecule (ICAM-1) antibody showed a diffuse staining. NAC treatment markedly reduced the intensity and degree of P-selectin and ICAM-1 in tissue section from SAG-shocked rats. In addition, in ex vivo studies in aortic rings from shocked rats, we found reduced contractions to noradrenaline and reduced responsiveness to a relaxant effect to acetylcholine (vascular hyporeactivity and endothelial dysfunction, respectively). NAC treatment improved contractile responsiveness to noradrenaline, enhanced the endothelium-dependent relaxations and significantly improved survival. Conclusion: Taken together, our results clearly demonstrate that NAC treatment exert a protective effect and part of this effect may be due to inhibition of the expression of adhesion molecule and peroxynitrite-related pathways and subsequent reduction of neutrophil-mediated cellular injury. (C) 2000 Elsevier Science B.V; Ail rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据