4.3 Article

Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices

期刊

CRYOBIOLOGY
卷 41, 期 1, 页码 17-24

出版社

ACADEMIC PRESS INC
DOI: 10.1006/cryo.2000.2260

关键词

trehalose; lactic acid bacteria; borate; glass transition; cryopreservation; lyophilization

向作者/读者索取更多资源

Lyophilization and vacuum- or spray-drying are some of the most useful techniques for preserving foods, agricultural products, and pharmaceuticals. Biological materials, however, can be irreversibly damaged during these treatments. Therefore, it is essential to design protective agents to preserve protein activity and cell viability. In this paper we examine the use of cu,ru-trehalose-borate systems as protectants for Lactobacillus acidophilus during freeze- and vacuum-drying. Trehalose was found to be an effective protectant for freeze-dried and vacuum-dried samples, and it is equivalent to a protective formulation which is in current industrial use. It is known from our previous work on enzymes that the presence of borate can dramatically enhance the protective ability of trehalose. In this work, the addition of trehalose-borate to bacterial concentrate greatly improves the recovery of viable cells after storage. This improvement was seen in freeze-dried samples stored at 37 degrees C as well as for vacuum-dried samples held at room temperature. A tailored buffering strategy was tested to counteract the high pH resulting from the addition of borate to the mixture. Use of citric or lactic acids in combination with ammonium hydroxide gave a protectant solution with high pH (resulting in effective crosslinking between trehalose and borate) but a dry product with reduced pH upon rehydration (conducive to cell survival). These results raise exciting possibilities for protection of more labile prokaryotic species as well as simple eukaryotes. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据