4.5 Article Proceedings Paper

The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms

期刊

NEUROCHEMISTRY INTERNATIONAL
卷 37, 期 2-3, 页码 163-170

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0197-0186(00)00019-X

关键词

glutamate transporters; signal transduction; MAP kinase; transcription factors; mGluR; glioma; chloride channel

向作者/读者索取更多资源

High-affinity glutamate transporters ensure termination of glutamatergic neurotransmission and keep the synaptic concentration of this: amino :acid below excitotoxic levels. However, neuronal glutamate transporters, EAAC1 and EAAT4, are located outside the synaptic cleft and contribute less significantly to the glutamate uptake in the brain than two astroglial transporters, GLAST and GLT1. Aberrant functioning of the glutamate uptake system seems to be linked to some neurodegenerative disorders (eg amyotrophic lateral sclerosis, ALS). Expression of glutamate transporters is differentially regulated via distinct cellular mechanisms. CLT1, which is expressed at very low levels in cultured astrocytes, is strongly induced in the presence of neurons. The presence immunocytochemical data provide further evidence that neuronal soluble factors, rather than physical contact between neurons and glia, determine the induction of GLT1 in astrocytes. This effect is apparently mediated by yet undefined growth factors(s) via the tyrphostin-sensitive receptor tyrosine kinase (RTK) signalling, that in turn, supports the downstream activation of p42/44 MAP kinases and the CREM and ATF-1 transcription factors. RTK-independent simultaneous activation of the CREB transcription factor suggests a possible involvement of complementary pathway(s). Neuronal soluble factors do not affect expression of GLAST, but induce supporting machinery for differential regulation of GLAST via the astroglial motabotropic glutamate receptors, mGluR3 and mGluR5. Thus, long-term treatment with the group I mGluR agonist, DHPG, causes down-regulation of GLAST, whereas the group II agonist, DCG-IV, has an opposite effect on the expression of GLAST in astrocytes. However, in BT4C glioma cells glutamate or other transportable substrates (D-aspartate and L-2,4-trans-PDC) induced cell-surface expression of EAAT4 in a receptor-independent manner. The activity-dependent trafficking of this transporter which also exhibits properties of a glutamate-gated chloride channel may play functional roles not only in neuronal excitability, but in glioma cell biology as well. (C) 2000 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据