4.7 Article

Steady free-surface thin film flows over topography

期刊

PHYSICS OF FLUIDS
卷 12, 期 8, 页码 1889-1898

出版社

AMER INST PHYSICS
DOI: 10.1063/1.870438

关键词

-

向作者/读者索取更多资源

We consider the slow motion of a thin viscous film flowing over a topographical feature (trench or mound) under the action of an external body force. Using the lubrication approximation, the equations of motion simplify to a single nonlinear partial differential equation for the evolution of the free surface in time and space. It is shown that the problem is governed by three dimensionless parameters corresponding to the feature depth, feature width and feature steepness. Quasi-steady solutions for the free surface are reported for a wide range of these parameters. Our computations reveal that the free surface develops a ridge right before the entrance to the trench or exit from the mound and that this ridge can become large for steep substrate features of significant depth. Such capillary ridges have also been observed in the contact line motion over a planar substrate where the buildup of pressure near the contact line is responsible for the ridge. For flow over topography, the ridge formation is a manifestation of the effect of the capillary pressure gradient induced by the substrate curvature. In addition, the minimum film thickness is always found near the concave corner of the feature. Both the height of the ridge and the minimum film thickness are found to be strongly dependent on both the profile depth and steepness. Finally, it is found that either finite feature width or a significant vertical component of gravity can suppress these effects in a way that is made quantitative and which allows the operative physical mechanism to be explained. (C) 2000 American Institute of Physics. [S1070-6631(00)00908-9].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据