4.4 Article

HAR07 encodes chorismate mutase of the methylotrophic yeast Hansenula polymorpha and is derepressed upon methanol utilization

期刊

JOURNAL OF BACTERIOLOGY
卷 182, 期 15, 页码 4188-4197

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.182.15.4188-4197.2000

关键词

-

向作者/读者索取更多资源

The HARO7 gene of the methylotrophic, thermotolerant yeast Hansenula polgmorpha was cloned by functional complementation. HARO7 encodes a monofunctional 280-amino-acid protein with chorismate mutase (EC 5.4.99.5) activity that catalyzes the conversion of chorismate to prephenate, a key step in the biosynthesis of aromatic amino acids. The HARO7 gene product shows strong similarities to primary sequences of known eukaryotic chorismate mutase enzymes. After homologous overexpression and purification of the 32-kDa protein, its kinetic parameters (k(cat) = 319.1 s(-1), n(H) = 1.56, [S](0.5) = 16.7 mM) as well as its allosteric regulatory properties were determined. Tryptophan acts as heterotropic positive effector; tyrosine is a negative-acting, heterotropic feedback inhibitor of enzyme activity. The influence of temperature on catalytic turnover and the thermal stability of the enzyme were determined and compared to features of the chorismate mutase enzyme of Saccharomyces cerevisiae. Using the Cre-loxP recombination system, we constructed mutant strains carrying a disrupted HARO7 gene that showed tyrosine auxotrophy and severe growth defects. The amount of the 0.9-kb HARO7 mRNA is independent of amino acid starvation conditions but increases twofold in the presence of methanol as the sole carbon source, implying a catabolite repression system acting on HARO7 expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据