4.6 Article

Triplet state mechanism for electron transfer oxidation of DNA

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S1011-1344(00)00081-6

关键词

DNA cleavage; DNA oxidation; anthraquinone-2-sulfonate

向作者/读者索取更多资源

The interaction of anthraquinone-2-sulfonate with nucleotides and DNA in acetonitrile and acetonitrile water solvent mixture have been studied using KrF laser photolysis aimed at elucidation of the reaction mechanism. Laser spectroscopy directly demonstrates that the initial species from interaction of anthraquinone-2-sulfonate with nucleotides are radical cations of nucleotides and radical anion of anthraquinone-2-sulfonate. In addition, formation of ion pair from interaction of any of mucleotides with anthraquinone-2-sulfonate is synchronous with decay of triplet anthraquinone-2-sulfonate, which has provided dynamic evidence for initiation of electron transfer from DNA bases to tripler anthraquinone-2-sulfonate. Moreover, direct observation of stabilized DNA guanyl radical cation from interaction of anthraquinone-2-sulfonate with DNA has provided initial evidence for selective cleavage of DNA at guanine moiety. The solvent-separated ion pairs in acetonitrile have evidently dissociated into free ions, thereby enabling independent study of the behavior of guanyl radical cations and radical anion of anthraquinone-2-sulfonate. (C) 2000 Elsevier Science S.A. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据