4.6 Article

The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence

期刊

BEHAVIOURAL BRAIN RESEARCH
卷 113, 期 1-2, 页码 73-83

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0166-4328(00)00202-3

关键词

nicotine dependence; mesoaccumbens dopamine; extra-synaptic dopamine; conditioned reinforcement; receptor desensitization

向作者/读者索取更多资源

A majority of habitual tobacco smokers find it very difficult to quit the habit because they become addicted to the nicotine present in tobacco smoke. Nicotine, like other psychostimulant drugs of abuse, increases dopamine release in the principal terminal field of the mesolimbic system, the nucleus accumbens, and there is evidence that this mediates the 'rewarding' properties of the drug, which reinforce its self-administration. This review focuses on the working hypothesis that addiction to nicotine, and other psychostimulant drugs, depends upon their ability to evoke a sustained increase in dopamine release directly into the extracellular space which lies between the cells in the nucleus accumbens where it stimulates extra-synaptic dopamine receptors. It is suggested that increased stimulation of these receptors is associated with increased incentive learning or the attribution of increased incentive salience to the cues associated with acquisition and delivery of the drug. The hypothesis proposes that these cues can become conditioned reinforcers of drug-taking behaviour. The receptors, which mediate the effects of nicotine on mesoaccumbens dopamine neurones, are desensitised by sustained exposure to nicotine at concentrations commonly found in the plasma of habitual smokers. It is proposed that, at times when the plasma nicotine concentration is sufficiently high to cause desensitisation of the receptors, tobacco smoking is maintained by the conditioned reinforcers present in the tobacco smoke. The hypothesis predicts, therefore, that conditioned reinforcement may play a more important role in the addiction to tobacco than for most other addictive behaviours. As a result, studies with nicotine have the potential to contribute to our understanding of the neurobiology of addiction which cannot easily be explored using drugs, such as cocaine and amphetamine, which invariably increase dopamine overflow in the forebrain. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据