4.7 Article

Vapor nucleation and droplet growth: Cluster distribution kinetics for open and closed systems

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 228, 期 1, 页码 64-72

出版社

ACADEMIC PRESS INC
DOI: 10.1006/jcis.2000.6927

关键词

nucleation; droplet growth; distribution kinetics; molecular clusters; heterogeneous nucleation; vapor-liquid equilibrium

向作者/读者索取更多资源

A theory based on cluster distribution kinetics for single-monomer addition and dissociation is presented as a framework for homogeneous and heterogeneous vapor nucleation and growth dynamics. For continuous cluster and monomer distributions in a well-mixed non-steady-state flow system, population (mass) balance equations yield moment equations for the cluster mass moments. Nuclei are either homogeneously generated or heterogeneously seeded, and subsequent cluster growth occurs by reversible condensation of vapor monomers. The zeroth moment is the number (or moles) of clusters, the first moment is cluster mass, and the second moment gives cluster-size variance. Solutions are proposed for steady-state flow (open) and non-steady-state batch (closed) systems. Experimental data are interpreted by recognizing that droplets typically observed in nucleation experiments have grown much larger than their nuclei. This allows resolution of the large temperature-dependent discrepancy between experiment and classical nucleation theory. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据