4.5 Article

RNA-dependent replication and transcription of hepatitis delta virus RNA involve distinct cellular RNA polymerases

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 20, 期 16, 页码 6030-6039

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.20.16.6030-6039.2000

关键词

-

向作者/读者索取更多资源

Cellular DNA-dependent RNA polymerase II (pol II) has been postulated to carry out RNA-dependent RNA replication and transcription of hepatitis delta virus (HDV) RNA, generating a full-length (1.7-kb) RNA genome and a subgenomic-length (0.8-kb) mRNA. However, the supporting evidence for this hypothesis was ambiguous because the previous experiments relied on DNA-templated transcription to initiate HDV RNA synthesis. Furthermore. there is no evidence that the same cellular enzyme is involved in the synthesis of both RNA species. In this study, we used a novel HDV RNA-based transfection approach, devoid of any artificial HDV cDNA intermediates, to determine the enzymatic and metabolic requirements for the synthesis of these two RNA species. We showed that HDV subgenomic mRNA transcription was inhibited by a low concentration of alpha-amanitin (<3 mu g/ml) and could be partially restored by an alpha-amanitin-resistant mutant pol II; however, surprisingly, the synthesis of the full-length (1.7-kb) antigenomic RNA was not affected by alpha-amanitin to a concentration higher than 25 mu g/ml. By several other criteria, such as the differing requirement for the de novo-synthesized hepatitis delta antigen and temperature dependence, we further showed that the metabolic requirements of subgenomic HDV mRNA synthesis are different from those for the synthesis of genomic-length HDV RNA and cellular pol II transcripts. The synthesis of the two HDV RNA species could also be uncoupled under several different conditions. These findings provide strong evidence that pol II, or proteins derived from pol LI transcripts, is involved in mRNA transcription from the HDV RNA template. In contrast, the synthesis of the 1.7-kb HDV antigenomic RNA appears not to be dependent on pol II. These results reveal that there are distinct molecular mechanisms for the synthesis of these two RNA species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据