4.5 Article

Ultrastructural localization of mint1 at synapses in mouse hippocampus

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 12, 期 8, 页码 3067-3072

出版社

BLACKWELL SCIENCE LTD
DOI: 10.1046/j.1460-9568.2000.00200.x

关键词

active zone; dentate gyrus; mossy fibre; postsynaptic density; synaptic vesicle

向作者/读者索取更多资源

Mint1 and mint2 were isolated in the course of seeking the protein ligands to munc18-1, a neuronal protein essential for synaptic vesicle exocytosis. The mint family of proteins has been highly conserved in the course of evolution, being retained from C. elegans to mammals. Several lines of biochemical and genetic evidence have suggested that mint1 and LIN-10, its homologue in C. elegans, function at synapses in the brain. Because the precise subcellular location of mint1 is incompletely known, we used immunostaining to examine the distribution of mint1 in the mouse brain including ultrastructural localization in synapses. Strong, finely punctate mint1 immunolabeling was detected throughout the brain, including cerebral cortex, striatum, hippocampus, thalamus, basal ganglia and cerebellum. At the most synapses in the molecular layer, mint1 was particularly abundant at the active zone and to a lesser extent in association with synaptic vesicles in the presynaptic terminals. In contrast, a very few synapses showed mint1 immunoreactivity in the postsynaptic density and there was no synapse double-positive in presynaptic and postsynaptic terminals. Mint1 distribution within presynaptic terminals overlapped that of munc18-1. These localization results are consistent with previously demonstrated biochemical interactions and strongly support functions of mint1 in synaptic vesicle exocytosis and synaptic organization in the central nervous system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据