4.3 Review

The structural properties of plant peroxisomes and their metabolic significance

期刊

BIOLOGICAL CHEMISTRY
卷 381, 期 8, 页码 639-648

出版社

WALTER DE GRUYTER & CO
DOI: 10.1515/BC.2000.084

关键词

beta-oxidation; compartmentalization; metabolite transport; multienzyme complex; peroxisomes; porin-like channel

向作者/读者索取更多资源

Plant peroxisomes can be isolated by Percoll density gradient centrifugation at high purity and metabolic competence as well as in relatively large quantities. According to biochemical and electrophysiological analyses, plant peroxisomes have recently been shown to differ from other cell organelles in essential structural properties. Unlike mitochondria or plastids, compartmentalization of plant peroxisomal metabolism is in major parts not caused by a boundary function of the membrane but is primarily due to the specific structure of the protein matrix. The enzymes of the photorespiratory C-2 cycle of leaf peroxisomes are arranged as multienzyme complexes that allow efficient metabolic channelling with high flux rates and minimum leakage of reactive oxygen species from the organelle. Transfer of metabolites, such as carboxylates, proceeds across the peroxisomal membrane via a porin-like channel, which represents a relatively unspecific but highly efficient transport system. Because all variants of peroxisomes, which all contain only a single boundary membrane, are confronted with the task of transporting a large group of metabolites while preventing the escape of reactive intermediates, it is reasonable to speculate that the unique compartmentalization feature of leaf peroxisomes also applies to peroxisomes from fungi and mammals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据