4.8 Article

A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.150091797

关键词

-

向作者/读者索取更多资源

There are a number of diseases in which normally soluble proteins associate into regular, insoluble amyloid fibrils. The development of in vitro model systems in which detailed structural, kinetic, and thermodynamic characterization are feasible is of critical importance to our understanding of the amyloid fibril phenomenon. The formation of amyloid fibrils by proteins that are not associated with disease has been recently described, suggesting that this may be a common property of many proteins and not only of the few proteins associated with amyloidoses. The B1 Ig-binding domain of protein G (beta 1) is an extremely well-characterized model system, We have found that under certain experimental conditions, some variants of pr form fibrils with high reproducibility. By controlling the stability of the protein-either by mutations or by changing experimental conditions-we are able to modulate the ability of the protein to form fibrils. For all of the variants, we find that the key requirement for fibril formation is to choose conditions in which the population of intermediate conformations present during the unfolding transition is maximized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据