4.5 Article

New, faster, image-based scatter correction for 3D PET

期刊

IEEE TRANSACTIONS ON NUCLEAR SCIENCE
卷 47, 期 4, 页码 1587-1594

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/23.873020

关键词

-

向作者/读者索取更多资源

We report on a new numerical implementation of the single-scatter simulation scatter correction algorithm for 3D PET. Its primary advantage over the original implementation is that it is a much faster calculation, currently requiring less than 30 sec execution time per bed position for an adult thorax, thus making clinical whole-body scatter correction more practical. The new code runs on a single processor workstation CPU instead of a vector processor array, making it highly portable. It is modular and independent of any particular reconstruction code. The computed scatter contribution is now intrinsically scaled relative to the emission image and no longer requires normalization to the scatter tails in the sinogram when all activity is contained within the field of view, making it more robust against noise. The new algorithm has been verified against the original code on both phantom and human thorax studies. Initial resorts indicate that scatter correction may be accurately performed following, instead of prior to, either 3D reprojection or Fourier rebinning. Some evidence is presented that the single-scatter operator, when applied to an uncorrected emission image provides reasonable compensation for multiple scatter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据