4.7 Article

Adsorption kinetics of a hydrophobic-hydrophilic diblock polyelectrolyte at the solid-aqueous solution interface:: A slow birth and fast growth process

期刊

MACROMOLECULES
卷 33, 期 16, 页码 6051-6059

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma991207j

关键词

-

向作者/读者索取更多资源

The adsorption kinetics of a diblock copolymer poly(tert-butyl methacrylate)-b-poly(glycidyl methacrylate sodium sulfonate) on hydrophobic substrate from aqueous solution under different added monovalent salt (NaCl) concentrations was investigated using an ellipsometric technique. The effect of monovalent counterion size on adsorption kinetics of the same copolymer on hydrophobic surfaces was also part of the investigation. The results, in general, indicate that the adsorption process on solid surfaces occurs through the anchoring of hydrophobic chains due to the short-ranged hydrophobic interactions. The kinetic data reveal three distinct stages in the adsorption process: an incubation period, a subsequent fast growth process of the polymer layer, and a plateau (equilibrium) region. These three stages are found to be influenced by salt concentration as well as counterion size. The equilibrium adsorption density increases as a function of salt concentration, and the dependence is found to be different from the theoretical predictions. The incubation time increases with salt concentration according to a power la cv dependence, and a simple bound ionic layer formation on the substrate is proposed as a possible explanation for this observation. An attempt has been made to explain the growth process in terms of an Avrami type ordering process. The Avrami analysis indicates that the buildup of polyelectrolyte layer structure depends on added salt conditions. Our kinetic data suggest that the diffusion of the chains to the surface is not the rate-controlling process for adsorption. A slow birth (nucleation) and fast growth of the layer seem to be the determining adsorption process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据