4.7 Article

Numerical investigation of transitional and weak turbulent flow past a sphere

期刊

JOURNAL OF FLUID MECHANICS
卷 416, 期 -, 页码 45-73

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112000008880

关键词

-

向作者/读者索取更多资源

This work reports results of numerical simulations of viscous incompressible flow past a sphere. The primary objective is to identify transitions that occur with increasing Reynolds number, as well as their underlying physical mechanisms. The numerical method used is a mixed spectral element/Fourier spectral method developed for applications involving both Cartesian and cylindrical coordinates. In cylindrical coordinates, a formulation, based on special Jacobi-type polynomials, is used close to the axis of symmetry for the efficient treatment of the 'pole' problem. Spectral convergence and accuracy of the numerical formulation are verified. Many of the computations reported here were performed on parallel computers. It was found that the first transition of the flow past a sphere is a linear one and leads to a three-dimensional steady flow field with planar symmetry, i.e. it is of the 'exchange of stability' type, consistent with experimental observations on falling spheres and linear stability analysis results. The second transition leads to a single-frequency periodic flow with vortex shedding, which maintains the planar symmetry observed at lower Reynolds number. As the Reynolds number increases further, the planar symmetry is lost and the flow reaches a chaotic state. Small scales are first introduced in the flow by Kelvin-Helmholtz instability of the separating cylindrical shear layer; this shear layer instability is present even after the wake is rendered turbulent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据