4.7 Article

Young stellar populations around SN 1987A

期刊

ASTROPHYSICAL JOURNAL
卷 539, 期 1, 页码 197-208

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/309212

关键词

galaxies : individual (Large Magellanic Cloud); Magellanic Clouds; stars : early-type; stars : evolution; stars : pre-main-sequence; supernovae : individual (SN 1987A)

向作者/读者索取更多资源

We present the first results of a study of the stellar population in a region of 30 pc radius around SN 1987A, based on an ana ysis of multiband Hubble Space Telescope (HST) WFPC2 images. The effective temperature, radius and, possibly, reddening of each star were determined by fitting the measured broadband magnitudes to the ones calculated with model atmospheres. In particular, we have determined effective temperatures and bolometric luminosities for 21,995 stars, and for a subsample of 2510 stars we also determined individual reddening corrections. In addition, we have identified all stars with Ha equivalent widths in excess of 8 Angstrom a total of 492 stars. An inspection of the H-R diagram reveals the presence of several generations of young stars, with ages between 1 and 150 Myr, superposed on a much older field population (0.6-6 Gyr). A substantial fraction of young stars with ages around 12 Myr make up the stellar generation coeval to SN 1987A progenitor. The youngest stars in the held appear to be strong-line T Tauri stars, identified an the basis of their conspicuous (W-eq > 8 Angstrom) H alpha excesses. This constitute the first positive detection of low-mass (about 1-2 M.) pre-mam-sequence (PMS) stars outside the Milky Way. Their positions in the H-R diagram appear to require that star formation in the LMC occurs with accretion rates about 10 times higher than in the Milky Way, i.e., similar to 10(-4) M. yr(-1). SN 1987A appears to belong to a loose, young cluster 12 +/- 2 Myr old, in which the slope of the present mass function is almost identical to Salpeter's, i.e., Gamma = d log N/d log M similar or equal to - 1.25 for masses above 3 M., but becomes much Batter for lower masses, i.e., Gamma similar or equal to -0.5. On a large scale, we find that the spatial distributions of massive r tars and low-mass PMS stars are conclusively different, indicating that different star formation processes operate for high- and low-mass stars. This results casts doubts on the validity of an initial mass function (IMF) concept on a small scale (say, less than 10 pc). Moreover, it appears that a determination of the low-mass end IMF in the LMC requires an explicit identification of PMS stars. A preliminary analysis, done for the whole held as a single entity, shows that the IMF slope for the young population present over :he entire region is steeper than Gamma similar or equal to -1.7.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据