4.5 Article

An improved empirical potential energy function for molecular simulations of phospholipids

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 104, 期 31, 页码 7510-7515

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0007843

关键词

-

向作者/读者索取更多资源

Improvements in the CHARMM all-atom force field for atomic-level molecular simulations of lipids are reported. Substantial adjustments have been made to the Lennard-Jones (LJ) hydrocarbon and torsional parameters and to the partial atomic charges and torsional parameters of the phosphate moiety. These changes were motivated by a combination of unexpected simulation results and recent high-level ab initio quantum mechanical calculations. The parameter optimization procedure is described, and the resulting energy function validated by an 11 ns molecular dynamics simulation of a hydrated phospholipid bilayer. Of note is the influence of the hydrocarbon LJ parameters on the conformational properties of the aliphatic tails, emphasizing the importance of obtaining the proper balance between the bonded and nonbonded portions of the force field. Compatibility with the CHARMM all-atom parameter sets for proteins and nucleic acids has been maintained such that high quality simulations of biologically interesting membranes are possible. The complete force field is included as Supporting Information and is available from www.pharmacy.umaryland.edu/similar to alex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据