4.8 Article

Molecular mechanism of endothelial growth arrest by laminar shear stress

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.170282597

关键词

-

资金

  1. NHLBI NIH HHS [HL-19454, P01 HL043026, R01 HL064382, HL-43026, HL-64382, R01 HL056707, R29 HL056707, R01 HL019454] Funding Source: Medline

向作者/读者索取更多资源

This study was designed to elucidate the mechanism underlying the inhibition of endothelial cell growth by laminar shear stress. Tumor suppressor gene p53 was increased in bovine aortic endothelial cells subjected to 24 h of laminar shear stress at 3 dynes (1 dyne = 10 mu N)/cm(2) or higher, but not at 1.5 dynes/cm(2). One of the mechanisms of the shear-induced increase in p53 is its stabilization after phosphorylation by c-Jun N-terminal kinase. To investigate the consequence of the shear-induced p53 response, we found that prolonged laminar shear stress caused increases of the growth arrest proteins GADD45 (growth arrest and DNA damage inducible protein 45) and p21(cip1), as well as a decrease in phosphorylation of the retinoblastoma gene product. Our results suggest that prolonged laminar shear stress causes a sustained p53 activation, which induces the up-regulation of GADD45 and p21(cip1). The resulting inhibition of cyclin-dependent kinase and hypophosphorylation of retinoblastoma protein lead to endothelial cell cycle arrest. This inhibition of endothelial cell proliferation by laminar shear stress may serve an important homeostatic function by preventing atherogenesis in the straight part of the arterial tree that is constantly subjected to high levers of laminar shearing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据