4.5 Article

Computation of the pK of liquid water using coordination constraints

期刊

CHEMICAL PHYSICS
卷 258, 期 2-3, 页码 139-150

出版社

ELSEVIER
DOI: 10.1016/S0301-0104(00)00129-4

关键词

-

向作者/读者索取更多资源

The equilibrium constant for autodissociation of water is computed by imposing constraints on proton coordination number in an ab initio molecular dynamics (MD) simulation of the liquid. Dissociation is enforced by gradually decreasing the number of hydrogen atoms coordinated with a selected oxygen to one, transforming a water molecule into a hydroxyl ion. Alternatively, a hydronium ion is created by increasing the proton coordination to three. These two pathways are compared to a previous ab initio MD study by Trout and Parrinello [B.L. Trout, M. Parrinello, Chem. Phys. Lett. 288 (1998) 343] who used a constraint on OH bond length. The resulting numerical estimates of pK(w) = 13 +/- 1 are in good agreement. Tt is shown that coordination constraints are more effective for stabilization of the highly activated and short lived solvent separated ion pairs that form in the advanced phase of the reaction. A predominant solvent separated ion pair structure is found to have a double pentameric structure. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据