4.4 Article

Effects of exotic invasive trees on nitrogen cycling: a case study in Central Spain

期刊

BIOLOGICAL INVASIONS
卷 11, 期 8, 页码 1973-1986

出版社

SPRINGER
DOI: 10.1007/s10530-008-9374-3

关键词

Exotic trees; Litter decomposition; Mineralization rate; Nitrogen availability; Nitrogen cycle

资金

  1. Spanish Ministry of Education and Science [CGL2007-61873/BOS]
  2. UAH grant for her stay at Wageningen University
  3. Wageningen Graduate School Production Ecology and Resource Conservation
  4. REMEDINAL network (Comunidad de Madrid)

向作者/读者索取更多资源

We assess the hypothesis that rates of nitrogen transformations in the soil are altered upon replacement of native by exotic trees, differing in litter properties. Ailanthus altissima and Robinia pseudoacacia, two common exotic trees naturalized in the Iberian Peninsula, were compared with the native trees Ulmus minor and Fraxinus angustifolia, respectively. Naturally senesced leaves of each species were collected and C:N ratio, N and lignin content assessed. We prepared 64 litter bags per species and left them to decompose, below the canopy of the same species and below the canopy of the paired species. Dry mass, N concentration and N pool of the remaining litter were assessed after 5 and 7 months. Soil samples were collected three times during the experiment to assess soil moisture, organic matter, pH, potential mineralization rates and mineral N pools. Mineral N availability was assessed three times in the field by using ion-exchange resin-impregnated membranes. Ailanthus litter decomposed faster than Ulmus litter, probably due to the higher toughness of the latter. In spite of its high N content, Robinia litter decomposed slower than Fraxinus one, probably due to its high lignin content. In both cases, litter decomposition was faster below the exotic than the native canopies. The release of N per unit of initial litter mass was higher under both invaded situations (Ailanthus below Ailanthus and Robinia below Robinia) than under the native ones. However, soils collected below native and exotic trees neither differed in potential N mineralization rate nor in mineral N. This may be attributed to a quick plant uptake of released N and/or to a high organic matter accumulation in the soil previous to invasion that can exert a tighter control on soil N transformations than the current exotic litter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据