4.3 Article

Equilibrating errors: reliable estimation of information transmission rates in biological systems with spectral analysis-based methods

期刊

BIOLOGICAL CYBERNETICS
卷 108, 期 3, 页码 305-320

出版社

SPRINGER
DOI: 10.1007/s00422-014-0598-2

关键词

Random error; Time delay bias error; Welch's method; Shannon theory; Sensory systems; Photoreceptor performance

资金

  1. Academy of Finland
  2. Sigrid Juselius Foundation

向作者/读者索取更多资源

Shannon's seminal approach to estimating information capacity is widely used to quantify information processing by biological systems. However, the Shannon information theory, which is based on power spectrum estimation, necessarily contains two sources of error: time delay bias error and random error. These errors are particularly important for systems with relatively large time delay values and for responses of limited duration, as is often the case in experimental work. The window function type and size chosen, as well as the values of inherent delays cause changes in both the delay bias and random errors, with possibly strong effect on the estimates of system properties. Here, we investigated the properties of these errors using white-noise simulations and analysis of experimental photoreceptor responses to naturalistic and white-noise light contrasts. Photoreceptors were used from several insect species, each characterized by different visual performance, behavior, and ecology. We show that the effect of random error on the spectral estimates of photoreceptor performance (gain, coherence, signal-to-noise ratio, Shannon information rate) is opposite to that of the time delay bias error: the former overestimates information rate, while the latter underestimates it. We propose a new algorithm for reducing the impact of time delay bias error and random error, based on discovering, and then using that size of window, at which the absolute values of these errors are equal and opposite, thus cancelling each other, allowing minimally biased measurement of neural coding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据